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Abstract—A novel technique, called the envelope-finite element
(EVFE) method, is proposed as a more efficient full-wave time-
domain modeling scheme of electromagnetic waves. The EVFE
method simulates the signal envelope rather than the original
signal waveform by de-embedding the signal carrier from the
time-domain wave equation. The de-embedded equation is then
solved in the time domain using finite-element methods based on
Newmark–Beta time stepping. Compared to traditional time-do-
main simulation techniques such as finite difference time-domain
or finite element time-domain methods, only the signal envelope
needs to be sampled in EVFE simulation. This method can reduce
computation time when signal envelope/carrier ratios are very
small. The purpose of this paper is to introduce this new concept,
by presenting the two-dimensional EVFE formulations, stability
conditions, and some supporting numerical examples.

Index Terms—Envelope simulation, finite-element method, full-
wave approach, time-domain modeling.

I. INTRODUCTION

T RADITIONAL electromagnetic transient simulation
techniques such as finite-difference time-domain (FDTD)

methods or finite-element time-domain (FETD) methods have
become quite popular for the past two decades. Compared to
their frequency-domain analogy, their capability to generate
time-domain waveforms in a straightforward manner bring
many advantages in simulating broad-band system responses or
identifying circuit parasitics [1], [2]. There are also efforts on
time-domain co-simulations coupling electromagnetic waves
with active/nonlinear devices [3], [4]. However, the time step in
simulation is usually required to be very small because of the
CFL stability condition. Even when their implicit versions [5],
[6] are used, the time-domain waveform has to be sampled at a
minimum of twice the highest signal frequency to satisfy the
Nyquist sampling criterion regardless of the signal bandwidth.

However, modern wireless and optical communication sig-
nals often employ digital modulations on the RF carriers or RF
modulations on the optical carriers. The signal bandwidths in
these systems are usually very narrow relative to their carrier
frequencies. When transient simulators are used for this case,
much of the computation is wasted. To address this limitation,
a new circuit simulation technique called the Circuit Envelope
has been recently introduced in [7] and exploited in HPEEsof’s
ADS or MDS design software. By discretizing and simulating
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the signal envelopes on defined carrier frequencies, it has proven
to be much more efficient than transient simulators like SPICE
for narrow-band cases.

Based on a the similar concept, a novel electromagnetic
solver called the envelope-finite element (EVFE) technique
is proposed in this paper. Derived rigorously from Maxwell’s
equations, the EVFE technique is able to simulate time-varying
complex envelopes of electromagnetic waves. The essential
idea is to perform time marching of the signal envelope on top
of the frequency-domain finite-element method (FEM) solution
at the carrier frequency. This is achieved by de-embedding the
signal carrier from the time-domain wave equation, on which
the FEM is based. Since only the signal envelope needs to be
sampled, much sparser time steps can be used than those in
FDTD or FETD techniques, which results in much higher com-
putation efficiency when the envelope/carrier ratio is small. In
addition to all the advantages as a full-wave time-domain tech-
nique, EVFE techniques also have considerable computational
advantages over frequency-domain FEM, because there is no
need to solve the boundary value problem once again for each
different frequency. The inversion of the finite element matrix
only needs to be done once for the defined carrier frequency, if
a direct solver is used. Even for large-scale three-dimensional
(3-D) problems where an iterative solver is necessary, the
matrix formation and precondition for a different frequency
need not be repeated. The algorithm is also of low complexity
and can be easily written by modifying a conventional FEM
code.

This paper is organized as follows. The EVFE formulations
are first derived from the scalar wave equations in Section II.
The proof of unconditional stability in time-domain recurrence
is then given in Section III. In Section IV, the dispersion error
of the proposed approach is analyzed numerically by studying
a two-dimensional (2-D) cavity with regarding to different
time-step and carrier frequency selection. Section V presents
the implementation of traveling wave boundary conditions
for EVFE formulation. For validation, EVFE solutions of
some guided-wave problems are obtained in Section VI, with
comparison to frequency-domain FEM solutions. Finally, the
conclusion of this paper is given in Section VII.

II. EVFE FORMULATIONS

For simplicity, the EVFE formulation presented here is only
for 2-D TEM or TM waves [8]. It can be easily extended for
3-D full-vector modeling of arbitrary microwave structures. The
time-dependent electromagnetic field excited by electric current
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density is described by the following inhomogeneous wave
equation:

(1)

where is the conductivity, and are, re-
spectively, the permittivity and permeability. For a 2-D area
is bound by the boundary, it follows that the scalar wave equa-
tion regarding to longitudinal component of magnetic field is

(2)

where and are the relative permittivity and permeability.
By defining the carrier frequency , the field component and
the current density can be written in a modulated signal format
as

(3)

where is the time-varying complex envelope of the field
at the carrier frequency. It should be noted that the expression
in (3) is not unique but dependent on the definition of carrier
frequency. Normally the carrier is chosen to be the center fre-
quency of the interested frequency band in order to minimize the
envelope frequency. Substituting (3) into (2) and dividing both
sides by yields the partial differential equation (PDE) for
the envelope

(4)

where is the free-space light speed and is a
constant. Let’s call (4) an envelope equation. It is noticed that
the envelope equation reduces to a scalar Helmholtz equation
when is time independent, on which the frequency-domain
FEM is based. On the other hand, if the carrier frequencyis
chosen to be zero, the envelope equation is also equivalent to
the time-dependent wave equation on which the implicit FETD
method is based. Therefore, one can easily solve it by treating it
as the other time-dependent wave equations. The inner product
of (4) with a testing function leads to the weak form

(5)

Assuming that the boundaryconsists of only perfect electric
conductor (PEC) or perfect magnetic conductor (PMC), the path
integral term on the right-hand side vanishes. For spatial dis-
cretization, the envelope variable is expanded in terms of 2-D
FEM basis functions . The application of Galerkin’s process
results in a system of ordinary differential equations

(6)

where is the coefficient vector of . , , and are time-
independent matrices and are defined by

(7)

To discretize (7) in the time domain, the Newmark–Beta formu-
lation [6] can be used

(8)

where is the discrete-time representation of
. is a constant that has to be carefully chosen to guarantee

stability. It is recommended that , which leads to an
unconditionally stable two-step update scheme as we shall prove
next. Therefore, the resulted update scheme is

(9)

To solve the above equations, the matrix on the left-hand side
needs to be inversed. Note that this matrix is time independent:
it needs to be filled and solved only once if a direct sparse-matrix
solver is used.

III. STABILITY ANALYSIS

The stability analysis of FETD methods has been presented
in both [5] and [6]. Here the stability condition for EVFE
techniques will be derived in a way similar to the work in [6].
However, as we shall find out, the derived stability condition
for EVFE techniques is not exactly the same as that in FETD
methods. Assuming there is no excitation in the system given
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in (6), the stability can be examined with regarding to the
following differential equations:

(10)

where is the th solution vector of the above homogeneous
equations, e.g., the field envelope vector for theth mode. After
the discretization in time, the two-step recurrence algorithm for

takes the form

(11)

The general solution can be written as

(12)

where is the growth factor for mode , which is a scalar
number. Substituting (12) into (11) yields the following equa-
tion:

(13)

where is the second-order characteristic matrix polyno-
mial for [9]. It takes the form

(14)

Therefore, the growth factor and mode vector are, re-
spectively, the th eigen value and eigen vector of the second-
order eigen value problem represented by (13). Taking the inner
product of (13) with regarding to the mode vector, it follows
that

(15)

Let , , and represent, respectively, the inner products
of , , and with regard to . Equation (15) reduces to a
set of scalar second-order equations as follows:

(16)

For stability, it is necessary that the modulus of the growth factor
be bounded by one for all modes, e.g., , . There-
fore, it has to be shown that all the roots of the above equations
are within the unit circle. It is well known that the interior of the

unit circle is mapped to the left-half plane under the so-called
transform. Therefore, let

(17)

Equation (16) is now rewritten in terms ofas

(18)

The stability requirement is thus equivalent to demanding the
real part of to be nonpositive. The roots of the above second-
order equation are well known as

(19)

where , , and are polynomial coefficients in (18). In FETD
methods, , , , the stability condition is obviously
satisfied when . On the other hand, matrix in the
EVFE formulation is no longer positive definite. Consequently,
the stability condition is stricter. In order for the real part of
to be nonpositive, the following conditions must hold:

(20)

For arbitrary media, the first condition is satisfied only when
, while the second condition always holds. Therefore,

the only task left is to prove that the third condition holds when
. This is achieved by rewriting the coefficient matrices

(21)

where is a semipositive definite matrix and is positive def-
inite matrix. They are self-adjointing matrices defined by

(22)

Their inner products should have the same relationship as in
(21). Substituting this relationship into (20) yields

(23)
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Fig. 1. Relative error of the resonant frequency in a 2-D cavity versus different
widths of the time step. The exact resonant frequency is 3.0364 GHz.

Since and , it is easy to show that the above
formula is nonpositive. Hence, leads to an uncondi-
tionally stable EVFE update scheme.

IV. NUMERICAL DISPERSIONANALYSIS

Dispersion errors exist in most of the time-domain tech-
niques. The major part of the error is due to the inaccurate
modeling of the sinusoidal behavior of the electromagnetic
wave. Piecewise polynomial discretization in the time domain
is normally not a good approximation to sinusoids unless
very fine time-step or very high-order polynomials are used.
However, it is expected that the dispersion error for EVFE tech-
niques will be less serious than other time-domain approaches,
since it models the slowly varying signal envelope rather
than the fast oscillating original signal waveform. To validate
this statement, the resonant frequency for a 2-D rectangular
cavity is calculated and the error versus different time steps
and carrier frequencies are studied. The cavity is enclosed by
PEC and there is no dielectric filled. The length of the cavity
is 4.94 cm, which gives the lowest resonant frequencyat
3.0364 GHz. The system is excited by some bandlimited noise
and the resonant frequency is obtained by locating the peaks in
the Fourier transform of the late time signal envelope. Define
the relative error percentage as , where

is the calculated resonant frequency. Fig. 1 plotsversus
different time-step widths when the carrier frequency is fixed
to 2.0 GHz. As expected, the relative error of the frequency
calculation is almost proportional to the time step. In Fig. 2,
the time step is fixed to 0.1 ns, and the relative error versus
different selection of carrier is studied and plotted versus the
frequency difference between the resonance and the carrier.
The relative error shows a second-order dependency to .
It is noticed that the dispersion error reaches its maximum
when , which is the case for the FETD method. Overall,
we have . Therefore, for the least dispersion
error without compromising the computation efficiency, the
carrier frequency should be selected to be as close as possible
to the simulated frequency. When there is noa prior knowledge
of the frequency characteristics of the simulated signal, the best

Fig. 2. Relative error of the resonant frequency in a 2-D cavity versus
difference frequency between the resonance and the carrier. The exact resonant
frequency is 3.0364 GHz.

Fig. 3. Sketch of an empty planar waveguide.

choice would be half of the highest frequency that one wants to
simulate.

V. ABSORBINGBOUNDARY CONDITIONS

Consider a general 2-D waveguide problem, where the path
integral exists on the right-hand side of (5). As plotted in Fig. 3,
the boundary consists of PEC boundary of the planar wave-
guide, excitation truncation boundary , and the termination
truncation boundary . On PEC, is a natural boundary con-
dition and has no contribution to the right-hand side path in-
tegral. For the truncation boundaries, the Mur’s first-order ab-
sorbing boundary condition (ABC) can be applied based on
the traveling-wave assumption. In EVFE techniques, the fre-
quency-domain version of ABC is always a good approxima-
tion to use if the signal bandwidth is relatively narrow. However,
rigorous implementation of ABC in EVFE simulation requires
special handling as follows. First let’s consider the termination
boundary . The traveling wave assumption in the time domain
is

(24)

Substituting (3) into (24) leads to the envelope boundary condi-
tion

(25)
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Fig. 4. Magnetic field envelope along the waveguide for different observation
times.

The boundary condition for the excitation can be derived in a
similar way as

(26)

where is the envelope of incident field. Substituting (25) and
(26) into the right-hand side path integral of (5) and rearranging
both sides leads to the modification of the matrix coefficients in
(6) as follows:

(27)

VI. GUIDED-WAVE NUMERICAL EXAMPLES

A couple of numerical examples are presented to validate the
above formulations. The first example is an empty planar wave-
guide, depicted in Fig. 3. The waveguide is 6-m long and 4-cm
wide. The incident wave is a modulated Gaussian pulse in the
form of

(28)

where , GHz, and ns. For this ex-
citation, theenvelope/carrier frequencyratio isabout10%.There-
fore, a time step ns is used for the EVFE simulation,
which is much wider than the carrier period. The total number of
time stepsused is 16. Toget the sameprecision, an explicit FDTD
method needs at least 200 times that and an implicit FETD simu-
lation needs at least 20 times that. Since there is no discontinuity,
the electromagnetic wave should propagate without dispersion.
Fig. 4 plots the field envelope along the waveguide at different
time steps, where a nice traveling wave effect is observed.

Fig. 5. Sketch of a planar waveguide with two debris, with or without dielectric
filled in between.

(a)

(b)

Fig. 6. Time-domain signal envelope for: (a) a return wave and (b) a through
wave.

The second example is again the same planar waveguide, but
with two irises in the middle. As depicted in Fig. 5, the length of
the iris is 1.5 cm on each side. The two apertures are constructed
5 cm away from each other to intentionally form a resonance
peak around the carrier frequency. The space between the two
irises is filled either with or without dielectric. The same exci-
tation and time step as in the first example are used. After the
simulation, the time-domain signal envelope is recorded in both
the excitation plane and the termination plane. The total number
of time steps is 60. As shown in Fig. 6, the long tails of the
signals are observed in both the return wave and through wave
when there is no dielectric filled in between, which indicates a
sharp frequency resonance. When the center is filled by lossy
dielectric ( , ), it can be seen that the
signal tails are much shortened, which represents the resonance
is attenuated. By applying the Fourier transform to the time-do-
main waveform, the -parameters are generated and plotted in
Figs. 7 and 8 against the frequency-domain FEM results. Very
good agreement is found from those comparisons, which fur-
ther validates the approach. It is also noticed that the resonance
peaks in the -parameters are both shifted and weakened when
lossy dielectric is filled in between.
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(a)

(b)

Fig. 7. Comparison ofS between EVFE result (lines) and frequency-domain
FEM result (signs). (a) Magnitude ofS . (b) Phase ofS .

(a)

(b)

Fig. 8. Comparison ofS between EVFE result (lines) and frequency-domain
FEM result (signs). (a) Magnitude ofS . (b) Phase ofS .

VII. CONCLUSION

A novel full-wave electromagnetic simulation method called
the EVFE technique has been proposed based on the envelope
simulation concept. When applied to cases with athe slowly
varying signal envelope on top of a fast oscillating carrier, it can
reduce computation time over the traditional time-domain tech-
niques. The approach has proven to be unconditionally stable. It
has also been shown that EVFE techniques have generally better
dispersion-error performance compared to FETD methods. Two
2-D numerical examples have been presented to validate the
approach. Overall, EVFE can be considered as a more general
electromagnetic simulation frame that unites the frequency-do-
main and time-domain techniques, since it reduces to frequency-

domain FEM when the envelope is constant and to FETD when
the carrier frequency is chosen to be zero.
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